Dichloro(6,6'-dimethyl-2,2'-bipyridyl)cobalt(II) Hemibenzene Solvate

By Gregory L. Baker, Frank R. Fronczek, Garry E. Kiefer, Charles R. Marston, Charles L. Modenbach, George R. Newkome, Wallace E. Puckett and Steven F. Watkins

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA
(Received 23 December 1987; accepted 20 May 1988)

Abstract. $\quad\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right] \cdot \frac{1}{2} \mathrm{C}_{6} \mathrm{H}_{6}, \quad M_{r}=353.14$, $P 2_{1} / c$, monoclinic, $a=7.505$ (3), $b=13.544$ (3), $c=$ 15.728 (2) $\AA, \quad \beta=96.11$ (2) ${ }^{\circ}, \quad V=1589.6$ (8) \AA^{3}, Z $=4, \quad D_{x}=1.475 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71073 \AA, \mu$ $=14.1 \mathrm{~cm}^{-1}, F(000)=720, T=295(1) \mathrm{K}, R=0.028$ for 2103 reflections with $I>3.0 \sigma(I)$ (2786 unique observations). The Co is tetrahedrally coordinated, with two essentially equal $\mathrm{Co}-\mathrm{Cl}$ bonds $[2 \cdot 2139$ (5) \AA] and two equal $\mathrm{Co}-\mathrm{N}$ bonds $[2.040$ (1) \AA]. The fivemembered metallocycle is in a slightly twisted envelope conformation, with Co in the flap [dihedral angle $\left.3.8(5)^{\circ}\right]$. A benzene molecule of solvation resides on the crystallographic inversion center.

Experimental. The compound (I) was synthesized as reported (Newkome, Pantaleo, Puckett, Ziefle \& Deutsch, 1981). An aqua-blue, prismatic crystal was mounted with epoxy on a glass fiber in random orientation. Details of data collection and structural refinement are given in Table 1.

(I)

The structure was solved using the Patterson heavy-atom method which revealed the positions of Co and both Cl atoms. The remaining atoms were located in successive difference Fourier syntheses. H atoms were located and their positions and isotropic thermal parameters were refined. The structure was refined in full-matrix least squares with Enraf-Nonius SDP (Frenz, 1978) where the function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ and the weight w is defined as $4 F_{o}{ }^{2} \sigma^{2}\left(F_{o}{ }^{2}\right)$. The final cycle of refinement included 241 variable parameters and converged to $R=0.028$. Atomic scattering factors, including those for anomalous dispersion, were taken from International Tables for X-ray Crystallography (1974).

Final positional and equivalent isotropic thermal parameters are given in Table 2, and selected bond

Table 1. Experimental details

Table 2. Positional parameters and their e.s.d.'s
The equivalent isotropic thermal parameter, for atoms refined anisotropically, is defined by the equation

$\left[a^{2} B_{11}+b^{2} B_{22}+c^{2} B_{33}+a b B_{12} \cos \gamma+a c B_{13} \cos \beta+b c B_{23} \cos \alpha\right]$				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Co	$0.18404(4)$	$0.08870(2)$	$0.33539(2)$	$4.008(6)$
$\mathrm{Cl}(1)$	$-0.06275(9)$	$0.09453(6)$	$0.24494(5)$	$7.01(2)$
$\mathrm{Cl}(2)$	$0.40660(9)$	$0.16774(6)$	$0.28314(4)$	$6.16(2)$
$\mathrm{N}(1)$	$0.1648(2)$	$0.1237(2)$	$0.4604(1)$	$4.09(4)$
$\mathrm{N}(2)$	$0.2612(2)$	$-0.0434(1)$	$0.3894(1)$	$3.76(4)$
$\mathrm{C}(1)$	$0.1147(3)$	$0.2111(2)$	$0.4909(2)$	$5.27(6)$
$\mathrm{C}(2)$	$0.1212(4)$	$0.2262(2)$	$0.5790(2)$	$6.49(7)$
$\mathrm{C}(3)$	$0.1776(4)$	$0.1521(2)$	$0.6340(2)$	$6.56(7)$
$\mathrm{C}(4)$	$0.2291(4)$	$0.0630(2)$	$0.6028(2)$	$5.33(6)$
$\mathrm{C}(5)$	$0.2208(3)$	$0.0505(2)$	$0.5151(1)$	$3.97(5)$
$\mathrm{C}(6)$	$0.2717(3)$	$-0.0433(2)$	$0.4757(1)$	$3.72(4)$
$\mathrm{C}(7)$	$0.3290(3)$	$-0.1265(2)$	$0.5222(2)$	$5.00(6)$
$\mathrm{C}(8)$	$0.3749(3)$	$-0.2094(2)$	$0.4798(2)$	$5.57(6)$
$\mathrm{C}(9)$	$0.3626(3)$	$-0.2098(2)$	$0.3923(2)$	$5.45(6)$
$\mathrm{C}(10)$	$0.3050(3)$	$-0.1256(2)$	$0.3480(2)$	$4.53(5)$
$\mathrm{C}(11)$	$0.0545(5)$	$0.2877(2)$	$0.4272(2)$	$7.67(9)$
$\mathrm{C}(12)$	$0.2895(5)$	$-0.1215(2)$	$0.2530(2)$	$7.27(8)$
$\mathrm{C}(1 B)$	$0.4648(5)$	$0.5244(3)$	$0.4157(2)$	$7.95(9)$
$\mathrm{C}(2 B)$	$0.3274(5)$	$0.5136(3)$	$0.4638(2)$	$8.15(9)$
$\mathrm{C}(3 B)$	$0.6364(5)$	$0.5117(3)$	$0.4506(2)$	$8.21(9)$

[^0]

Fig. 1. View of the title complex with 50% thermal ellipsoids (Johnson, 1965).
lengths and bond angles are shown in Table 3.* Fig. 1 shows the molecule and the atomic numbering scheme.

Related literature. Preparation of $\mathrm{Pd}^{I I}, \mathrm{Pt}^{\mathrm{II}}, \mathrm{Cu}^{\text {II }}$ and Zn ${ }^{\text {II }}$ analogues: Newkome, Pantaleo, Puckett, Ziefle \& Deutsch (1981); structure of Pd analogue: Newkome,

[^1]Table 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Co}-\mathrm{Cl}(1)$	$2.2134(5)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.347(2)$
$\mathrm{Co}-\mathrm{Cl}(2)$	$2.2144(5)$	$\mathrm{N}(1)-\mathrm{C}(5)$	$1.351(2)$
$\mathrm{Co}-\mathrm{N}(1)$	$2.042(1)$	$\mathrm{N}(2)-\mathrm{C}(6)$	$1.351(2)$
$\mathrm{Co}-\mathrm{N}(2)$	$2.039(1)$	$\mathrm{N}(2)-\mathrm{C}(10)$	$1.348(2)$
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(2)$	$110.89(2)$	$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(1)$	$126.8(1)$
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(1)$	$118.07(4)$	$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(5)$	$113.2(1)$
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(2)$	$118.72(4)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	$119.9(2)$
$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{N}(1)$	$112.24(4)$	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(6)$	$113.7(1)$
$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{N}(2)$	$112.78(4)$	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(10)$	$126.6(1)$
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$	$81.28(6)$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	$119.7(2)$

Fronczek, Gupta, Puckett, Pantaleo \& Kiefer (1982); structure of $\left[\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2} \mathrm{Cu}(\mathrm{I})\right] \mathrm{BF}_{4}$: Burke, McMillin \& Robinson (1980).

References

Burke, P. J., McMillin, D. R. \& Robinson, W. R. (1980). Inorg. Chem. 19, 1211-1214.
Frenz, B. A. (1978). In Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Newkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C. \& Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782-1783.
Newkome, G. R., Pantaleo, D. C., Puckett, W. E., Ziefle, P. L. \& Deutsch, W. A. (1981). J. Inorg. Nucl. Chem. 43, 1529-1531.

Acta Cryst. (1988). C44, 1669-1671

Hygric Acid (I) and Stachydrine (II) as Their Hydrochlorides

By Graham P. Jones, Bodapati P. Naidu and Leslie G. Paleg
Department of Plant Physiology, Waite Agricultural Institute, University of Adelaide, Glen Osmond, South Australia 5064, Australia

and Edward R. T. Tiekink
Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001, Australia
(Received 1 March 1988; accepted 3 May 1988)

Abstract. (I) 1-Methyl-L-proline hydrochloride, $\mathrm{C}_{6}{ }^{-}$ $\mathrm{H}_{12} \mathrm{NO}_{2}^{+} . \mathrm{Cl}^{-}, \quad M_{r}=165 \cdot 6$, orthorhombic, $P 2,2,2_{1}, a$ $=6.717$ (3), $b=10.397$ (1), $c=12.140$ (1) $A, \quad V=$ $848(2) \AA^{3}, \quad Z=4, \quad D_{m}=1 \cdot 28, \quad D_{x}=1.297 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \bar{\alpha}$ radiation, $\lambda=0.7107 \AA, \quad \mu=0.346 \mathrm{~mm}^{-1}$, $F(000)=352, T=293$ (2) K, $R=0.061$ for 750 observed reflections. (II) 2-Carboxy-1,1-dimethylpyrrolidinium chloride, $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}_{2}^{+} . \mathrm{Cl}^{-}, \quad M_{r}=179.6$, 0108-2701/88/091669-03\$03.00
orthorhombic, $P 2,2,2, a=6.561$ (2), $b=11.671$ (6), $c=11.690$ (4) $\AA, V=895$ (2) $\AA^{3}, Z=4, \quad D_{m}=1.31$, $D_{x}=1.333 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \bar{\alpha}$ radiation, $\lambda=0.7107 \AA$, $\mu=0.331 \mathrm{~mm}^{-1}, \quad F(000)=384, \quad T=293$ (2) K, $R=$ 0.031 for 1239 observed reflections. In the N methylated and N, N^{\prime}-dimethylated proline derivatives (I) and (II) the N atom lies out of the plane of the pyrrolidine ring, to the same side of the molecule as the © 1988 International Union of Crystallography

[^0]: © 1988 International Union of Crystallography

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, bond lengths, bond angles, torsion angles, and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51040 (34 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

